#### SAN JOSE TO MERCED



March 29-30, 2011



#### AGENDA

- Open House 6:00
- Welcome & Recap of Recent Activities 6:40
- Presentation on Sound and Visual Analysis Methodology 6:45
- Next Steps 7:20
- Gilroy Station Visioning Process 7:25
- Q&A 7:30
- Resume Open House 8:00
- Adjourn 8:15



#### TONIGHT'S WORKSHOP

#### **2<sup>nd</sup> in a series of community workshops**

#### By the end of tonight, we will:

- Review key themes from previous meeting, current activities and next steps
- Provide an overview on methodology for sound and visual analysis
- Review potential future workshop topics





#### RECAP OF OUR ACTIVITIES

- 2005: Final Program Environmental Impact Report/Statement for the Proposed California High-Speed Train System
- 2008: Bay Area to Central Valley High-Speed Train Program Environmental Impact Report/Statement
- **2010:** Revised Bay Area to Central Valley High-Speed Train Program Environmental Impact Report
- Now: Release Supplemental AA Report (expected to be in May 2011) to be included in a project Draft EIR/EIS
- Next: Release a project Draft EIR/EIS (early 2012)



### WORKSHOP #1 RECAP - REVIEW OF ALIGNMENT DEVELOPMENT





#### MORGAN HILL-GILROY SUBSECTION







#### **WORKSHOP #1 RECAP**

#### Key themes raised

- Environmental and property impacts residential, commercial, agricultural, open space, wildlife
- Proposed changes to roadway network
- Preference for different alignments at different locations
- Potential mitigation
- Process, timing, selection of single alignment and station location
- Statewide issues ridership and funding



### POTENTIAL TOPICS FOR FUTURE WORKSHOPS

- Transportation system, circulation, parking
- Station design during environmental review process
- Continue discussion on environmental analysis
- Mitigation measures
- Process for providing comments on Draft EIR/EIS
- Others based on community feedback





#### WHY WE NEED IT

Status quo is not an option

#### **Population Growth**

California's population now: 38 million. By 2035: 50 million

#### We can build...

 New freeways, airport runways and more departure gates to address our expected population growth

or

 800-mile high-speed train system, powered by 100% renewable electricity generated by clean wind and solar energy





#### INITIAL CONSTRUCTION

Why the Central Valley makes sense

Initial infrastructure construction will begin in the Central Valley, the backbone of the system:

Construction starting in second half of 2012, investing \$5.5 billion into the economy

Potential to create nearly 100,000 jobs

120 miles from north of Fresno near Madera to Bakersfield – a

choice that:

Meets state and federal requirements

 Gives the greatest flexibility to build both north and south as funding becomes available

 Constitutes the backbone of a system that will reach across the whole state







## SOUND AND CALIFORNIA'S HIGH-SPEED TRAINS





### SOUND AND CALIFORNIA'S HIGH-SPEED TRAINS

- We understand that sound is a key concern.
- The Federal Railroad Administration has rigorous procedures to measure sound that the Authority will follow.
- The Authority will work with the public and partner agencies to consider ways to mitigate significant sound impacts.







#### SOUND ANALYSIS METHODOLOGY

- Identify high-speed train sound sources
- Identify locations for sound measurements
- Conduct sound measurements
- Analyze impacts
- Identify potential mitigation



#### SOUND ANALYSIS TERMINOLOGY

- **dB** = decibel (dB)
- dBA = A\_weighted decibel (dBA)
- Leq = One hour equivalent sound (Leq)
- Ldn = Day night sound level (Ldn)
  - + 10 dB ~ twice more



**Rolling** – sound from the wheels as trains move along the tracks.





#### **Propulsion** –

sound from motors and gears that make the train move.





**Equipment** – sound from cooling fans and air conditioners.

Aerodynamics due to Train and Pantograph (at high speed) Equipment noise (Cooling Fans & HVAC) Propulsion noise (at acceleration) Rolling sound (at lower speeds) steel wheel on steel rail SAN JOSE TO MERCED



Aerodynamics – sound from the flow of air moving past the train at high speed.

Aerodynamics due to Train and Pantograph (at high speed) **Equipment noise** (Cooling Fans & HVAC) Propulsion noise (at acceleration) Rolling sound (at lower speeds) steel

wheel on steel rail



### THOROUGH ENVIRONMENTAL ANALYSIS

#### The review will look at two key measurements:



One-Hour Equivalent Sound Level



Day-Night Sound Level



### THOROUGH ENVIRONMENTAL ANALYSIS



One-Hour Equivalent Sound Level, which measures the average of moment-to-moment fluctuations in sound **over a single hour** – taking into account both the number of trains and the time they take to pass by – the best measure for assessing the impacts on offices, parks, schools, and libraries.



### THOROUGH ENVIRONMENTAL ANALYSIS



Day-Night Sound Level,
 which is average of sound
 fluctuations over a full 24
 hours, taking into account
 the heightened sensitivity in
 residential areas to sounds
 made during the night.



### HERE'S WHAT YOU CAN EXPECT - WITHOUT MITIGATION





### FAST TRAINS MAKE FOR SHORTER SOUNDS

A train moving at 220 mph – the top speed of California's high-speed trains – will be heard for about **four seconds** 

#### By comparison....

A 50-car freight train traveling at 30 mph can be heard for **one minute** 





#### SOUND ANALYSIS METHODOLOGY

- Noise sensitive areas identified along the alignment
- Short term (20 min) and long term (at least 24 hrs)
  noise measurements conducted at representative
  sites to establish existing sound levels
- Average one hour or 24 hour sound generated by trains calculated using FRA procedure



#### NOISE IMPACT DETERMINATION





### COMMITMENT TO SOUND MITIGATION - ENGINEERING AND DESIGN

For a train traveling less than 160 mph, a 6 to 12-foot sound barrier will reduce noise by 5 to 9 decibels (the human ear perceives a 10decibel reduction as cutting the sound in half).



#### Noise levels without sound barrier



Noise levels with sound barrier



# REFLECTED SOUND **Ground level** Barrier without absorption SAN JOSE TO MERCED



#### REFLECTED SOUND





#### REFLECTED SOUND





### SOUND LEVELS FOR DIFFERENT CONFIGURATIONS

- The sound from a high-speed train operating on an aerial structure could be 1 or 2 decibels higher than at ground level.
- The sound from a high-speed train operating in an open trench could be 5 to 7 decibels lower than at ground level.



# AESTHETICS & VISUAL QUALITY





#### VISUAL AND AESTHETIC ANALYSIS METHODOLOGY & TERMINOLOGY

- Define Project Setting and Viewshed
- Identify Viewers
- Identify Viewpoints
- Identify Existing Visual Resources:
   Vividness, Intactness, Unity, Light Sources
- Depict Visual Appearance with Project
- Compare to Existing
- Identify Impacts
- Propose Mitigations



### VISUAL AND AESTHETIC ANALYSIS METHODOLOGY & TERMINOLOGY

**Define** Project Setting and Viewshed





### VISUAL AND AESTHETIC ANALYSIS METHODOLOGY & TERMINOLOGY

#### **Identify** Viewers & Viewpoints





### EXISTING VISUAL RESOURCES: VIVIDNESS, INTACTNESS, UNITY

**Vividness** is the degree of drama, memorability, or distinctiveness of the landscape components as seen in a particular view.



### EXISTING VISUAL RESOURCES: VIVIDNESS, INTACTNESS, UNITY

**Intactness** is a measure of the visual integrity of the natural and human-built landscape and its freedom from encroaching elements.



# EXISTING VISUAL RESOURCES: VIVIDNESS, INTACTNESS, UNITY

**Unity** is the landscape's degree of visual coherence and compositional harmony considered as a whole. High unity frequently attests to the careful design of individual components and their relationship in the landscape or an undisturbed natural landscape.



# KEY VISUAL RESOURCES IN THE MORGAN HILL-GILROY SUBSECTION











### FUNDAMENTALS OF VISUAL AND AESTHETIC ANALYSIS

- Depict Visual Appearance with Project
- Photo simulations introduce vertical profile options and related visual considerations





# FUNDAMENTALS OF VISUAL AND AESTHETIC ANALYSIS

#### **Compare** to Existing





### VISUAL AND AESTHETIC ANALYSIS METHODOLOGY & TERMINOLOGY

### Identify impacts & propose mitigations

- Screen project
- Integrate surplus property
- Adapt to local context
- Sound wall treatments / landscaping



## VISUAL AND AESTHETIC IMPACTS AND MITIGATIONS

Mitigation example: Screen





## VISUAL AND AESTHETIC IMPACTS AND MITIGATIONS

Mitigation example: Retaining wall with landscaping





## PHOTO SIMULATION MORGAN HILL CALTRAIN STATION





# PHOTO SIMULATION MORGAN HILL CALTRAIN STATION





# PHOTO SIMULATION 6<sup>TH</sup> STREET, DOWNTOWN GILROY





#### PHOTO SIMULATION SR 152 CROSSING





#### **NEXT STEPS**

- Tonight's discussion will inform our continued analysis and future community workshop topics
- Project milestones
  - Supplemental Alternatives Analysis Report (May 2011)
  - Draft EIR/EIS (Early 2012)
    - The potential impacts and mitigation will be presented
  - Final EIR/EIS (Late 2012)
    - A single alignment and station option will be identified
  - NOD/ROD (Late 2012)





#### QUESTIONS/COMMENTS

#### **Contact Us:**

Website: http://www.cahighspeedrail.ca.gov

• **Phone:** 1-800-881-5799

#### **Comments:**

- Email: san.jose\_merced@hsr.ca.gov
- Postal Mail:

California High-Speed Rail Authority

San Jose to Merced Section 925 L Street, Suite 1425 Sacramento, CA 95814



### **Gilroy Station-Area Visioning Process**

(Overview of process given verbally by Don Dey, Transportation Engineer, City of Gilroy)



### Thank you!

